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ABSTRACT

The relative advantages of 2-D re-
cursive digital filters over their non-
recursive counterparts are discussed. A
design example illustrates the ability of
2-D recursive filters to yield excellent
responses with far fewer coefficients than
nonrecursive filters require. This dif-
ficulty is seen to be partially overcome
by using nonrecursive filters with very
efficient implementations.

INTRODUCTION

In recent years, there has been a
rapid increase in the number of applica-
tions requiring the digital processing of
two-dimensional (2-D) signals. Typical
areas of application have included;

1) satellite-borne remote photography for
the monitoring of environmental effects,
earth resources, and urban land use; -

2) processing of geological and seismo-
logical data in the exploration for oil
and natural gas; 3) 3-D imaging of the
brain using multiple 2-D projection
techniques; and 4) the processing of
medical and industrial radiographs.

In most 2-D signal processing appli-
cations, the goal is to somehow extract
some desired information from a 2-D data
array by performing appropriate operations
on that data. Perhaps the most common
method of extracting the desired infor-
mation is via 2-D digital filtering. As
in 1-D, there are two filtering implemen-
tations in the 2-D case: nonrecursive and
recursive. Nonrecursive 2-D digital fil-
ters can be characterized by the differ-
ence equation

y(m,n) = Z Z a(k,2) x (m-k,n-2) (1)

k 2
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where y is the output array, a is the

filter array (finite extent), and x is the

input array. The more general recursive
filters are characterized by the equation

¥ ¥ bk, )ym-k,n-1) =
k 1

Y X atk,)x(m-k,n-{) (2)
x 1

From a transfer function viewpoint, non-
recursive filters have only zeros, i.e.,
the transfer function is simply a poly-
nogial in tgi two unit shift variables

z and z . Recursive filters, on the
o%her hand,; have transfer function rela-
tionships consisting of a ratio of poly-
nomials, and, therefore, possess both
poles and zeros. Historically, the ar-
guments for using 1-D recursive filters
have been that they yield more efficient
implementations in terms of both storage
and computation; that is, the design
flexibility inherent in allowing the
transfer function to have both poles and
zeros results in better filter character-
istics, for a fixed total number of filter
coefficients, than can be achieved with
nonrecursive filters. The principal pur-
pose of this paper is to present results
that indicate that 2-D recursive filters
apparently enjoy this same advantage over
their nonrecursive counterparts.

FILTER DESIGN COMPARISONS

There have been many procedures pro-
posed for the design of 2-D nonrecursive
digital filters, including those found in
(1) - (6). Several of these techniques
are direct extensions of 1-D filter design
procedures: the windowing approaches
discussed in (1) and (7) and the fre-
quency sampling design procedure dis-
cussed in (2) are examples. Other tech-
niques include various 2-D linear pro-
gramming problems (3) and transformations
of 1-D filters to 2-D (4), (5).

Several 2-D recursive filter design
procedures have similarly been proposed
(7) - (10); here one must ensure that



the filter be stable in addition to
approximating the desired specification.
Most of these design procedures have as-
sumed a quarter-plane support for the
filter. Murray (11) has shown, however,
that such a constraint leads to some
severe restrictions on the resulting fre-
quency response of the filter. A design
procedure for the more general class of
half-plane filters (which are capable of
realizing an arbitrary magnitude 'specifi-
cation) has recently been proposed in (12)
and elaborated upon in (13).

A complete study of the comparative
capabilities of the numerous 2-D non-
recursive and recursive filter design pro-
cedures is a formidable task and beyond
‘the scope of this presentation. 1Instead,
we will restrict our attention to a com=-
parison of the half-plane recursive filter
design results of (13) and the nonrecur-
sive filter design results, via the
generalized McClellan transformation of
(5). Although the example discussed be-
low contains just one nonrecursive and
one recursive design procedure, our ex-
perience with other examples and other
procedures indicates that it is fairly
representative of the relative capabili-
ties of recursive and nonrecursive filters
in two dimensions.

The desired specification for the com-
parative designs was taken to be

1 lel < /4 or le| > 3%/4
S(u,v) =
.02 otherwise

v
where © = arctan 3

This corresponds to the 90° fan filter
specification illustrated by Figure 1.
Several half-plane recursive filters, of
various orders, were designed to approxi-
mate this specification. The design
procedure, described in detail in (13),
utilizes a nonlinear optimization al-
gorithm

v#
Figure 1. 1Ideal 90° Fan Filter
Specification

with the stability of the resulting
(locally) optimum filter ensured via a

spectral factorization stability test (14).
A weighted least squares minimization was
performed in the spatial frequency domain
(using a 32 x 32 DFT to evaluate the
approximation errors):; i.e., the weighted
12 error

2
IIW(ui.vj) [s(ui.vj)-lﬂ(ui.vj)l 3

was minimized subject to the stability
constraint. The weighting function in
this example was chosen to be 5 in the
passband, 0 in the transition band (any
point within 3 grid points of the pass-
band), and 1 in the stopband. The term
|H(v ,v.)] is the magnitude response of
the tecdrsive filter, and the squaring
operation results from the assumption of
a zero-phase implementation (i.e., 2 re-
cursions of the same filter are used in
opposing directions to achieve exactly
zero phase).

The optimal 3 x 3 half-plane denom-
inator with 4 x 4 numerator result (a
total of only 41 coefficients) at con-
vergence was

0.0103 0.0546 -0.0483 =0,0077

0.0627 0.3232 0.0663 0.0369
~0.4953 -0,7232 -0.4309 0.0365
0.4130 0.4390 0.2045 0.0364

0.0012 0.0003 -0.0454 ~0.0812 =-0.0741 =-0.0044 =-0,0052
0.002¢ 0.1044 0.0665 0.6778 0.1526 0.2022 00,0144
-0.0083 -0.0721 -0.85787 0.010) ~1.0150 =-0.2063 0.0024

1.1825 ©0.1992 ~0.0335 =0.0115

A plot of the magnitude (squared) re-
sponse of this filter is shown in Figure 2.
Note that the resulting recursive filter
yields an excellent approximation to the
spatial frequency specification of

Figure 1. ~

v
Figure 2. 4l-coefficient recursive
filter response.

For the nonrecursive filter design,
we implemented the generalized McClellan
transformation approach of (5). This
technique transforms a 1-D zero-phase
nonrecursive filter into a 2-D zero-phase
nonrecursive filter via the substitution

P Q

cos @ = 2: 2: t(p,q)cos pw, cos qu, .
p=0 dg=o

(4)



We chose this design method because it
gives good design results with only
limited computation required and because
it leads, as will be discussed in the
following section, to a very efficient
implementation which stands the best
chance of comparing favorably with the
more powerful recursive filters.

For the 90° fan design problem at
hand, a first-order mapping defined by
t(0,0) = (1,1} = 0, t(0,1) = -t(1,0) = 0.5
suffices (5). Several 1-D prototype
filters were designed via the Remez ex-
change algorithm of (15), resulting (after
transformation) in the 15 x 15, 19 x 19,
23 x 23, and 27 x 27 fan filters shown in
Figure 3. Note that the nonrecursive
filter performances cannot compete with
the 4l-coefficient recursive filter of
Figure 2 unless quite a large filter
support is chosen (say, at least 27 x 27
in this case). A guantitative comparison
is difficult due to the different error
norms used in the designs, but visual
inspection gives a good approximation to
the trade-offs involved. Other design
comparisons (for low-pass and other fan
filters) indicate to us that this is a
fairly representative example. We have
observed that nonrecursive filters with
400-1000 coefficients are needed to com-
pete with recursive filters with 40-100
coefficients; i.e., about a factor of
10 more coefficients are required.

IMPLEMENTATION ISSUES

The overriding reason for using re-
cursive filters to filter imagery is, as
in 1-D, that they possess more efficient
(in terms of computation and storage) im-
plementations than nonrecursive filters.
This is because, as the above example
illustrated, fewer filter coefficients
are generally reguired.

For simplicity, let us designate the

a) 15 x 15 filter b) 19 x 19 filter
response. response.
Figure 3.

total number of recursive filter coef-
ficient N_; e.g., for the 3 x 3 half-
plane witﬁ 4 x 4 numerator, N_ = 41. It
is readily verified that the gecursive
filtering requires (NR-l) multiplies per
pixel and (N_-1) adds per pixel. Further-
more, the I/B is very straightforward
because, due to the small filter sizes,
only a few rows of the image need be
present in memory at a time. This will
be trivial in all cases except when the
image is extremely large or the computer
memory is extremely limited -- in those
cases, other relatively straightforward
schemes are available that still require
modest 1/0 of data.

The implementation of nonrecursive
filters is an entirely different matter.
Several schemes have been used in the
past, including direct convolution, FFT
approaches (16) - (18), and sectioned
FFT approaches (19). Furthermore, the
filters designed via the generalized
McClellan transformation possess their
own extremely efficient implementation
(20).

Direct convolution is an efficient im-
plementation of 2-D nonrecursive filters
only when the filter support is very
small. For an N1 x N, filter, N Nz multi-~
plies and (N.N.=1) aads per pixél are
necessary. Ag aiscussed in (20), this
is slower than other techniques when
filter supports exceed approximately

10 x 10. With zero-phase filters, the
centrosymmetry of the coefficient array
reduces the number of multiplies by a
factor of 2.

FFT implementations can be very
efficient, particularly for large filter
sizes. This is because the FFT compu-
tations depend on the image size rather
than the filter size (at least when the
image is much larger than the filter).
The 2-D FFT implementation requires, for

v v -
c) 23 x 23 filter d) 27 x 27 filter
response. response.

Various nonrecursive 2-D filter responses designed

via the generalized McClellan transformation.




an 9 x M imagez(M a power.of.Z),

4 M5 logzM + M real multiplies and

6 M° log-M + M” adds. It therefore
requires“approximately 4 log.,M+1 multi-
plies and 6 log,M+1 adds per“pixel. The
1/0, however, gn be guite costly for
FFT implementations when the computer
memory is significantly smaller than the
image to be filtered (16); in such cases,
sectioned approaches can be used which
generally decrease I/0 requirements at the
cost of additional CPU computation (19).

The generalized McClellan filters
discussed above have a very efficient
special implementation which arises be-
cause of the 1-D nature of the filter
prior to transformation. For a 2N+l
length 1-D filter and a PxQ transformation,
it can be shown (20) that the resulting
{2NP+1)x (2NQ+1) 2~D filter is mplemen-
table with approximately (P+1) §+N+l
multiplies per pixel and (2P+1) “N+N adds
per pixel. As with the FFT implementation,
1/0 problems arise for large images with
this technique also; sectioned techniques
can again be employed in this case with
a modest increase in CPU computation
(multiplies and adds) resulting.

For the fan filter example above,
the various implementation possibilities
can be summarized as in Table 1. It is
apparent that the "single-recursion” half-
plane filter possesses a superior im-
plementation, whereas the FFT, generalized
McClellan implementation, and the zero-
phase recursive filter are approximately
equal. For computers with limited avail-
able primary memory, the I/O costs of
the nonrecursive implementations may
prove excessive also, again making the
recursive implementation attractive. One
must, of course, evaluate CPU vs. I/0
trade-offs and programming considerations
before making any such judgment for a

given computer architecture.

Total 4
Flosting Point
¢ multiplies! # Adds |Opezations
Per Pizel Per Pixel|pec Pixel

4l-cosfficient single recursion 1] 40 [ [
recursive filter:

sero~phase L 14 80 160
(2 recursions)
2”2 direct lution 120 128 1487
eive filter:
rrr (39 [} 102

Special McClellan
Piiter Implementatiog 4 13 17

Utilising fact that
transformation coeffy.
are power of 2 for
thiv exampld [ 1 b8}

Table 1. CPU compariscons of varicus filter implementations (assumed

163 3 1024 1eve) CONCLUSIONS

Some of the issues involved in com-
paring nonrecursive and recursive 2-D
digital filters have been discussed.
Recursive filters were seen to approxi-
mate a given specification with much
smaller filter supports than nonrecursive
filters. The attendant advantage in

filter implementation is lessened,
however, by the fast zmplementatlon
schemes enjoyed by 2-D nonrecursive
filter forms.
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